5,205 research outputs found

    Design mobile satellite system architecture as an integral part of the cellular access digital network

    Get PDF
    The Cellular Access Digital Network (CADN) is the access vehicle through which cellular technology is brought into the mainstream of the evolving integrated telecommunications network. Beyond the integrated end-to-end digital access and per call network services provisioning of the Integrated Services Digital Network (ISDN), the CADN engenders the added capability of mobility freedom via wireless access. One key element of the CADN network architecture is the standard user to network interface that is independent of RF transmission technology. Since the Mobile Satellite System (MSS) is envisioned to not only complement but also enhance the capabilities of the terrestrial cellular telecommunications network, compatibility and interoperability between terrestrial cellular and mobile satellite systems are vitally important to provide an integrated moving telecommunications network of the future. From a network standpoint, there exist very strong commonalities between the terrestrial cellular system and the mobile satellite system. Therefore, the MSS architecture should be designed as an integral part of the CADN. This paper describes the concept of the CADN, the functional architecture of the MSS, and the user-network interface signaling protocols

    Feynman Rules in the Type III Natural Flavour-Conserving Two-Higgs Doublet Model

    Full text link
    We consider a two Higgs-doublet model with S3S_3 symmetry, which implies a π2\pi \over 2 rather than 0 relative phase between the vacuum expectation values and and . The corresponding Feynman rules are derived accordingly and the transformation of the Higgs fields from the weak to the mass eigenstates includes not only an angle rotation but also a phase transformation. In this model, both doublets couple to the same type of fermions and the flavour-changing neutral currents are naturally suppressed. We also demonstrate that the Type III natural flavour-conserving model is valid at tree-level even when an explicit S3S_3 symmetry breaking perturbation is introduced to get a reasonable CKM matrix. In the special case β=α\beta = \alpha, as the ratio tanβ=v2v1\tan\beta = {v_2 \over v_1} runs from 0 to \infty, the dominant Yukawa coupling will change from the first two generations to the third generation. In the Feynman rules, we also find that the charged Higgs currents are explicitly left-right asymmetric. The ratios between the left- and right-handed currents for the quarks in the same generations are estimated.Comment: 16 pages (figures not included), NCKU-HEP/93-1

    Nano granular metallic Fe - oxygen deficient TiO2δ_{2-\delta} composite films: A room temperature, highly carrier polarized magnetic semiconductor

    Full text link
    Nano granular metallic iron (Fe) and titanium dioxide (TiO2δ_{2-\delta}) were co-deposited on (100) lanthanum aluminate (LaAlO3_3) substrates in a low oxygen chamber pressure using a pulsed laser ablation deposition (PLD) technique. The co-deposition of Fe and TiO2_2 resulted in \approx 10 nm metallic Fe spherical grains suspended within a TiO2δ_{2-\delta} matrix. The films show ferromagnetic behavior with a saturation magnetization of 3100 Gauss at room temperature. Our estimate of the saturation magnetization based on the size and distribution of the Fe spheres agreed well with the measured value. The film composite structure was characterized as p-type magnetic semiconductor at 300 K with a carrier density of the order of 1022/cm3 10^{22} /{\rm cm^3}. The hole carriers were excited at the interface between the nano granular Fe and TiO2δ_{2-\delta} matrix similar to holes excited in the metal/n-type semiconductor interface commonly observed in Metal-Oxide-Semiconductor (MOS) devices. From the large anomalous Hall effect directly observed in these films it follows that the holes at the interface were strongly spin polarized. Structure and magneto transport properties suggested that these PLD films have potential nano spintronics applications.Comment: 6 pages in Latex including 8 figure

    Fluctuation Exchange Analysis of Superconductivity in the Standard Three-Band CuO2 Model

    Full text link
    The fluctuation exchange, or FLEX, approximation for interacting electrons is applied to study instabilities in the standard three-band model for CuO2 layers in the high-temperature superconductors. Both intra-orbital and near-neigbor Coulomb interactions are retained. The filling dependence of the d(x2-y2) transition temperature is studied in both the "hole-doped" and "electron-doped" regimes using parameters derived from constrained-occupancy density-functional theory for La2CuO4. The agreement with experiment on the overdoped hole side of the phase diagram is remarkably good, i.e., transitions emerge in the 40 K range with no free parameters. In addition the importance of the "orbital antiferromagnetic," or flux phase, charge density channel is emphasized for an understanding of the underdoped regime.Comment: REVTex and PostScript, 31 pages, 26 figures; to appear in Phys. Rev. B (1998); only revised EPS figures 3, 4, 6a, 6b, 6c, 7 and 8 to correct disappearance of some labels due to technical problem

    Quantification of the impact of climate uncertainty on regional air quality

    Get PDF
    Uncertainties in calculated impacts of climate forecasts on future regional air quality are investigated using downscaled MM5 meteorological fields from the NASA GISS and MIT IGSM global models and the CMAQ model in 2050 in the continental US. Differences between three future scenarios: high-extreme, low-extreme and base case, are used for quantifying effects of climate uncertainty on regional air quality. GISS, with the IPCC A1B scenario, is used for the base case simulations. IGSM results, in the form of probabilistic distributions, are used to perturb the base case climate to provide the high- and low-extreme scenarios. Impacts of the extreme climate scenarios on concentrations of summertime fourth-highest daily maximum 8-h average ozone are predicted to be up to 10 ppbV (about one-seventh of the current US ozone standard of 75 ppbV) in urban areas of the Northeast, Midwest and Texas due to impacts of meteorological changes, especially temperature and humidity, on the photochemistry of tropospheric ozone formation and increases in biogenic VOC emissions, though the differences in average peak ozone concentrations are about 1–2 ppbV on a regional basis. Differences between the extreme and base scenarios in annualized PM2.5 levels are very location dependent and predicted to range between −1.0 and +1.5 μg m−3. Future annualized PM2.5 is less sensitive to the extreme climate scenarios than summertime peak ozone since precipitation scavenging is only slightly affected by the extreme climate scenarios examined. Relative abundances of biogenic VOC and anthropogenic NOx lead to the areas that are most responsive to climate change. Overall, planned controls for decreasing regional ozone and PM2.5 levels will continue to be effective in the future under the extreme climate scenarios. However, the impact of climate uncertainties may be substantial in some urban areas and should be included in assessing future regional air quality and emission control requirements.United States. Environmental Protection Agency (Science To Achieve Results (STAR) grant No. RD83096001)United States. Environmental Protection Agency (Science To Achieve Results (STAR) grant No. RD82897602)United States. Environmental Protection Agency (Science To Achieve Results (STAR) grant No. RD83107601)East Tennessee State Universit

    A spectral method for elliptic equations: the Dirichlet problem

    Full text link
    An elliptic partial differential equation Lu=f with a zero Dirichlet boundary condition is converted to an equivalent elliptic equation on the unit ball. A spectral Galerkin method is applied to the reformulated problem, using multivariate polynomials as the approximants. For a smooth boundary and smooth problem parameter functions, the method is proven to converge faster than any power of 1/n with n the degree of the approximate Galerkin solution. Examples in two and three variables are given as numerical illustrations. Empirically, the condition number of the associated linear system increases like O(N), with N the order of the linear system.Comment: This is latex with the standard article style, produced using Scientific Workplace in a portable format. The paper is 22 pages in length with 8 figure

    Fermionic superfluidity: From high Tc superconductors to ultracold Fermi gases

    Full text link
    We present a pairing fluctuation theory which self-consistently incorporates finite momentum pair excitations in the context of BCS--Bose-Einstein condensation (BEC) crossover, and we apply this theory to high TcT_c superconductors and ultracold Fermi gases. There are strong similarities between Fermi gases in the unitary regime and high Tc superconductors. Here we address key issues of common interest, especially the pseudogap. In the Fermi gases we summarize recent experiments including various phase diagrams (with and without population imbalance), as well as evidence for a pseudogap in thermodynamic and other experiments.Comment: Expanded version, invited talk at the 5th International Conference on Complex Matter -- Stripes 2006, 6 pages, 6 figure

    Stripes, Non-Fermi-Liquid Behavior, and High-Tc Superconductivity

    Full text link
    The electronic structure of the high-Tc cuprates is studied in terms of "large-U" and "small-U" orbitals. A striped structure and three types of quasiparticles are obtained, polaron-like "stripons" carrying charge, "svivons" carrying spin, and "quasielectrons" carrying both. The anomalous properties are explained, and specifically the behavior of the resistivity, Hall constant, and thermoelectric power. High-temperature superconductivity results from transitions between pair states of quasielectrons and stripons.Comment: 4 page
    corecore